25CE102: Object Oriented Programming using C++

w.e.f. Acader	nic Year:	2025-26					
Semester:		2					
Category of t	Category of the Course: Engineering Science						
Prerequisite:	Students should have basic knowledge of procedural programming using C, including variables, control structures, functions, and fundamental problem-solving skills.						
Rationale:	to develop modular, reusable	oriented programming concepts using C++ e, and maintainable software, laying the rogramming and real-world application					

Course Outcomes:

After completion of the course, student will be able to:

	Course Outcome (CO)	RBT Level (Cognitive Domain)
CO1	Describe the key principles of OOP and their advantages over procedural programming.	Understand (U)
CO2	Implement C++ programs using functions, classes, constructors, and operator overloading.	Apply (Ap)
соз	Demonstrate inheritance and polymorphism concepts for creating hierarchical and reusable programs.	Apply (Ap)
CO4	Develop file-handling programs and use C++ stream classes for data management.	Apply (Ap)
CO5	Evaluate and assess the effectiveness of templates and exception handling mechanisms in developing robust and reusable programs.	Evaluate (E)
CO6	Analyze complex programming scenarios and optimize solutions using OOP principles.	Analyze (An)

Teaching and Evaluation Scheme:

Teaching Scheme					Examination Scheme					
L	Т	P	С	Hrs/Week	IE	Theory	CIA	Practical	Total Marks	
03	-	02	04	05	40	60	30	20	150	

IE: Internal Evaluation Theory: Theory Exam (End Semester)
CIA: Continuous Internal Assessment Practical: Practical Exam (End Semester)

Detailed Syllabus:

Topic	Hrs.	% of Weightage
UNIT: 1 Concepts of OOP:	11	25
Introduction OOP, Procedural Vs. Object Oriented Programming, Principles of OOP, Benefits and applications of OOP. C++ Basics: Overview, Program structure, namespace, identifiers, variables, constants, enum, operators, typecasting, control structures. C++ Functions: Simple functions, Call and Return by reference, Overloading of functions, Inline functions, default arguments, friend functions, and virtual functions.		
UNIT: 2 Objects and classes:	11	25
Basics of object and class in C++, Private, protected and public Members, static data and static function, Constructors and their types, Destructors. Operator Overloading: Overloading unary and binary operators, Operator Overloading with friend function, Data Conversion, type conversion, class to class, basic to class, class to basic		
UNIT: 3 Inheritance & Polymorphism:	11	25
Inheritance: Concept of Inheritance, Types of inheritance, Method overriding, virtual base class, Virtual and Pure virtual function, Late binding, Polymorphism implementation using examples.		
UNIT: 4 File management, Templates, Exceptions:	12	25
File stream, C++ File stream classes, File management functions, File modes, Binary and random files. Function templates, class templates, Introduction to exception, try-catch throw, multiple catch, rethrowing exception, implementing user defined exceptions.		
	45	100

List of Practical:

#	Aim	Teaching Hrs.
Lab 1	Basics of C++ & Control Structures	02
	 Write a simple "Hello, World!" program and demonstrate C++ program structure. Implement a program to demonstrate data types, typecasting, and operators. Write a program to check whether a number is prime or not using control structures. 	
Lab 2	Functions in C++	02
	4. Implement call-by-value and call-by-reference in a function.	
	Write a program to demonstrate function overloading with different parameter lists.	
	6. Develop a program to implement an inline function for better	

	performance.	
Lab 3	Friend & Virtual Functions	02
	7. Write a program to demonstrate friend functions for	
	accessing private members.	
	8. Implement a virtual function and demonstrate dynamic	
	binding.	
Lab 4	Default Arguments & Namespaces	02
	9. Implement a function with default arguments and test	
	different cases.	
	10. Demonstrate the use of namespace and scope resolution	
_	operators in C++.	
Lab 5	Classes & Static Members	02
	11. Create a class for a student (name, roll number, marks) and	
	implement member functions.	
	12. Write a program to demonstrate static data members and	
lab C	static member functions.	00
Lab 6	Constructors & Destructors	02
	 Implement a program to demonstrate different types of constructors (default, parameterized, copy). 	
	14. Write a program to show destructor execution in object	
	destruction.	
Lab 7	Operator Overloading	02
Lub /	15. Overload the + operator to add two complex numbers.	02
	16. Implement overloading of unary operators (++,) using a	
	member function.	
Lab 8	Type Conversion	02
	17. Implement class-to-class type conversion using constructors.	
	18. Develop a program to convert basic type to class type and	
	vice versa.	
Lab 9	Inheritance Basics	02
	19. Implement single and multilevel inheritance with a real-world	
	example.	
	20. Write a program to demonstrate multiple inheritance using	
	two base classes.	
Lab 10	Method Overriding & Virtual Functions	02
	21. Demonstrate method overriding using base and derived class	0 2
	functions.	
	22. Implement virtual base classes in C++.	
Lab 11	Late Binding & Pure Virtual Functions	02
	23. Develop a program to demonstrate late binding using a	
	virtual function.	
	24. Implement a pure virtual function to create an abstract class.	
Lab 12	Polymorphism	02
	25. Implement runtime polymorphism using virtual functions.	
	26. Create a program that demonstrates compile-time	
	polymorphism using function overloading.	

Lab 13	File Handling Basics	02
	27. Write a C++ program to read and write data to a file.	
	28. Implement file modes (read, write, append, binary mode).	
Lab 14	Binary Files & Random Access	02
	29. Write a program to demonstrate binary file handling (read & write objects).	
	30. Implement a random-access file operation using seekg() and	
	seekp().	
Lab 15	Templates in C++	02
	31. Implement a function template for finding the maximum of two numbers.	
	32. Write a class template for a stack and perform push/pop operations.	
	Total Hours	30

TEXT/REFERENCE BOOKS:

Text Books:

- 1. Balagurusamy, E. (2020). Object-Oriented Programming with C++ (8th ed.). McGraw Hill.
- 2. Lafore, R. (2001). Object-Oriented Programming in C++ (4th ed.). Sams Publishing.
- 3. Kanetkar, Y. P. (2019). Let Us C++. BPB Publications.

Reference Books:

- 1. Schildt, H. (2002). C++: The Complete Reference (4th ed.). McGraw-Hill.
- 2. Holzner, S. (2002). C++ Black Book: A Comprehensive Guide to C++ Mastery. Paraglyph Press.

LIST OF OPEN-SOURCE SOFTWARE/LEARNING WEBSITE:

- Open-source software dev C++
- www.nptel.ac.in
- www.learncpp.com

Course Outcomes Mapping:

со	Course Outcome (CO) Description	POs/ PSOs Mapping	Cognitive Level (RBT)	Knowledge Category	Lectures (Hours)	Lab (Hours)
CO1	Describe the key principles of OOP and their advantages over procedural programming	PO1, PO2, PO4, PSO1	Understand	Conceptual, Factual	8	2
CO2	Implement C++ programs using	PO1, PO2,	Apply	Conceptual, Procedural	8	10

	functions, classes, constructors, and operator overloading	PO3, PO4, PSO1				
CO3	Demonstrate inheritance and polymorphism concepts for creating hierarchical and reusable programs	PO1, PO3, PO5, PSO1	Apply, Analyze	Conceptual, Procedural	8	8
CO4	Develop file-handling programs and use C++ stream classes for data management	PO1, PO4, PSO1	Apply	Conceptual, Procedural	5	4
CO5	Evaluate and assess the effectiveness of templates and exception handling mechanisms in developing robust and reusable programs	PO1, PO2, PO3, PO5, PSO2	Apply, Evaluate, Create	Conceptual, Procedural, Metacognitive	8	4
CO6	Analyze complex programming scenarios and optimize solutions using OOP principles	PO1, PO3, PO5, PO10, PSO1, PSO2	Analyze, Evaluate	Procedural, Metacognitive	8	2

Mapping of COs with POs & PSOs:

wapping or cos with ros & ross.														
	POs												PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	1	1	1	_	_	_	_	1	_	2	2	1
CO2	3	2	3	2	3	_	_	_	1	1	_	2	3	2
CO3	3	2	3	2	2	_	_	_	2	1	_	2	3	2
CO4	2	2	2	3	3	_	_	_	_	_	_	1	3	1
CO5	2	3	2	2	3	_	_	_	1	_	_	3	3	3
CO6	3	3	3	3	2	_	_	_	2	2	_	3	3	3

3: High, 2: Medium, 1: Low